您的位置:主页 > 学习资料 >
一元一次方程知识点
发布时间:2019-12-02 10:36

一元一次方程知识点

学习初一上册数学知识点的聪明出于勤奋,天才在于积累。所有的胜利,与征服自己的胜利比起来,都是微不足道;所有的失败,与失去自己的失败比起来,更是微不足道。以下是学习啦小编为大家整理的初一上册数学知识点一元一次方程,希望你们喜欢。
 
  初一上册数学知识点:一元一次方程
 
  3.1 一元一次方程
 
  1、方程是含有未知数的等式。
 
  2、方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程。
 
  注意:判断一个方程是否是一元一次方程要抓住三点:
 
  1)未知数所在的式子是整式(方程是整式方程);
 
  2)化简后方程中只含有一个未知数;
 
  3)经整理后方程中未知数的次数是1.
 
  3、解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。
 
  4、等式的性质: 1)等式两边同时加(或减)同一个数(或式子),结果仍相等;
 
  2)等式两边同时乘同一个数,或除以同一个不为0的数,结果仍相等。
 
  注意:运用性质时,一定要注意等号两边都要同时变;运用性质2时,一定要注意0这个数.
 
  3.2 、3.3解一元一次方程
 
  在实际解方程的过程中,以下步骤不一定完全用上,有些步骤还需重复使用. 因此在解方程时还要注意以下几点:
 
  ①去分母:在方程两边都乘以各分母的最小公倍数,不要漏乘不含分母的项;分子是一个整体,去分母后应加上括号;去分母与分母化整是两个概念,不能混淆;
 
  ②去括号:遵从先去小括号,再去中括号,最后去大括号;不要漏乘括号的项;不要弄错符号;
 
  ③移项:把含有未知数的项移到方程的一边,其他项都移到方程的另一边(移项要变符号) 移项要变号;
 
  ④合并同类项:不要丢项,解方程是同解变形,每一步都是一个方程,不能像计算或化简题那样写能连等的形式;
 
  ⑤系数化为1::字母及其指数不变系数化成1,在方程两边都除以未知数的系数a,得到方程的解。不要分子、分母搞颠倒。
 
  3.4 实际问题与一元一次方程
 
  一.概念梳理
 
  ⑴列一元一次方程解决实际问题的一般步骤是:①审题,特别注意关键的字和词的意义,弄清相关数量关系;②设出未知数(注意单位);③根据相等关系列出方程;④解这个方程;⑤检验并写出答案(包括单位名称)。
 
  ⑵一些固定模型中的等量关系及典型例题参照一元一次方程应用题专练学案。
 
  二、思想方法(本单元常用到的数学思想方法小结)
 
  ⑴建模思想:通过对实际问题中的数量关系的分析,抽象成数学模型,建立一元一次方程的思想.
 
  ⑵方程思想:用方程解决实际问题的思想就是方程思想.
 
  ⑶化归思想:解一元一次方程的过程,实质上就是利用去分母、去括号、移项、合并同类项、未知数的系数化为1等各种同解变形,不断地用新的更简单的方程来代替原来的方程,最后逐步把方程转化为x=a的形式. 体现了化“未知”为“已知”的化归思想.
 
  ⑷数形结合思想:在列方程解决问题时,借助于线段示意图和图表等来分析数量关系,使问题中的数量关系很直观地展示出来,体现了数形结合的优越性.
 
  ⑸分类思想:在解含字母系数的方程和含绝对值符号的方程过程中往往需要分类讨论,在解有关方案设计的实际问题的过程中往往也要注意分类思想在过程中的运用.
 
  三、数学思想方法的学**
 
  1. 解一元一次方程时,要明确每一步过程都作什么变形,应该注意什么问题.
 
  2. 寻找实际问题的数量关系时,要善于借助直观分析法,如表格法,直线分析法和图示分析法等.
 
  3. 列方程解应用题的检验包括两个方面:⑴检验求得的结果是不是方程的解;
 
  ⑵是要判断方程的解是否符合题目中的实际意义.
 
  四、应用(常见等量关系)
 
  行程问题:s=v×t
 
  工程问题:工作总量=工作效率×时间
 
  盈亏问题:利润=售价-成本
 
  利率=利润÷成本×100%
 
  售价=标价×折扣数×10%
 
  储蓄利润问题:利息=本金×利率×时间
 
  本息和=本金+利息
 
  初一上册数学知识点(一)
 
  几何图形
 
  1、几何图形:从形形色色的物体外形中得到的图形叫做几何图形。
 
  2、立体图形:这些几何图形的各部分不都在同一个平面内。
 
  3、平面图形:这些几何图形的各部分都在同一个平面内。
 
  4、虽然立体图形与平面图形是两类不同的几何图形,但它们是互相联系的。
 
  立体图形中某些部分是平面图形。
 
  5、三视图:从左面看,从正面看,从上面看
 
  6、展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形。这样的平面图形称为相应立体图形的展开图。
 
  7、⑴几何体简称体;包围着体的是面;面面相交形成线;线线相交形成点;
 
  ⑵点无大小,线、面有曲直;
 
  ⑶几何图形都是由点、线、面、体组成的;
 
  ⑷点动成线,线动成面,面动成体;
 
  ⑸点:是组成几何图形的基本元素。
 
  初一上册数学知识点(二)
 
  直线、射线、线段
 
  1、直线公理:经过两点有一条直线,并且只有一条直线。即:两点确定一条直线。
 
  2、当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点。
 
  3、把一条线段分成相等的两条线段的点,叫做这条线段的中点。
 
  4、线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。
 
  5、连接两点间的线段的长度,叫做这两点的距离。
 
  6、直线的表示方法:如图的直线可记作直线AB或记作直线m.
 
  (1)用几何语言描述右面的图形,我们可以说:
 
  点P在直线AB外,点A、B都在直线AB上.
 
  (2)如图,点O既在直线m上,又在直线n上,我们称直线
 
  m、n 相交,交点为O.
 
  7、在直线上取点O,把直线分成两个部分,去掉一边的一个部分,保留点0和另一部分就得到一条射线,如图就是一条射线,记作射线OM或记作射线a.
 
  注意:射线有一个端点,向一方无限延伸.
 
  8、在直线上取两个点A、B,把直线分成三个部分,去掉两边的部分,保留点A、B和中间的一部分就得到一条线段.如图就是一条线段,记作线段AB或记作线段a.
 
  注意:线段有两个端点.
 

编辑:贯学网guanxue.net 来源:贯学网
本文版权归原作者所有 转载请注明出处 浏览:   收藏:
您可能喜欢的文章
推荐阅读
热门阅读